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Abstract

A formulation for thick-walled composite blades is devised and implemented numerically. A parametric study

which is focused on the in¯uence of wall thickness on the structural behavior of blades, with an emphasize on the
elastic couplings induced by composite materials is also presented. In contrast with models for thin-walled blades,
the shear stresses perpendicular to the local wall direction are accounted for. The numerical solution is based on a

®nite-di�erence scheme where the displacement ®eld is described by four global displacements for each cross-section
and an out-of-plane warping function for each material point. Overall, the solution procedure employs an iterative
scheme that enables the inclusion of a large number of independent variables. The results reveal and demonstrate
the discrepancies between thick-walled modeling and thin-walled modeling as functions of the wall thickness for

various loading modes, and supply a clear indication of regions where employing a thick-walled model is
inevitable. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The design of helicopter blades is known to be a compromise between many di�erent and
contradicting demands. The di�erent requirements emerge from the vast range of operation conditions,
and it is clear that conventional design practice using isotropic materials is not capable of properly
ful®lling all requirements. This is partly due to the fact that the structural-dynamics characteristics of
isotropic blades do not include enough design degrees of freedom.

The introduction of composite materials to the design of the rotor blades has provided many
additional design parameters and degrees of freedom, and one of the promising structural features of
composite structures is the ability to introduce passive couplings into the main rotor structure. Being
slender structures, rotor blades are viewed and treated as beams, where usage of composite materials
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may induce couplings between the main elastic deformation components, namely: the transverse
displacements, the axial displacement, and the twist. Representative relevant studies of the phenomena
associated with the structural modeling of composite blades are: Stemple and Lee, 1989; Chandra et al.,
1990; Rapp, 1990; Kim and Dugundji, 1991; Librescu and Song, 1991; Chandra and Chopra, 1991;
Yuan et al., 1992; Song and Librescu, 1992; Chandra and Chopra, 1992a, 1992b; Kalfon and Rand,
1993; Bauchau and Chiang, 1993; Venkatesan et al., 1993; Kim and Dugundji, 1993; Straub et al., 1994;
Pai and Nayfeh, 1994; Armanios and Badir, 1995; Rand and Barkai, 1996; Epps and Chandra, 1996;
Kosmatka and Lake, 1996 and McCarthy and Chattopadhyay, 1996.

The above mentioned references contain many models that are capable of predicting the coupled
structural behavior of composite beams. However, only few of these models are capable of handling
blades of thick-walled cross-sections (e.g. Pai and Nayfeh, 1994; McCarthy and Chattopadhyay, 1996),
and the literature contains no study of the wall thickness in¯uence on the structural behavior of
composite beams, and in particular on the associated coupling magnitudes. Likewise, no indication
regarding the limitations of thin-walled models in predicting the structural behavior of thick-walled
blades is available. On the other hand, part of the current helicopter blades feature very thick walls.

It should be emphasized that unlike the isotropic case, the extension of the prediction capability of
solid models to the thick-walled case is not con®ned to the introduction of additional boundary
conditions. This is due to the fact that blades are typically constructed out of the orthotropic laminae
which are placed parallel to the local wall direction, and thus, the material system of coordinates varies
along the cross-sectional circumference, which complicates the formulation as will be clari®ed later on.
In addition, in contrast with the case of thin-walled beams, the modeling of sharp corners (like the four
corners in a box-beam cross-section) is important and poses some modeling di�culties. Thus, the
analysis presented in this paper includes the warping and the stress distributions over the wall thickness
which requires a much more detailed model with a relatively large number of unknowns.

Since models for thin-walled beams are simpler and more e�cient than models that are capable of
consistently dealing with thick-walled beams, additional goal of the present study is to explore the limits
of applicability of thin-walled models when thick-walled cross-sections are under discussion. Hence,
following the model presentation, a parametric study will be presented. The purpose of this study is to
supply a quantitative indication regarding the error which is induced by using thin-walled models for
increasing values of the wall thickness. The study includes all aspects of the structural behavior
including the coupling e�ects in symmetric and antisymmetric composite beams.

2. Governing equations for a thick-walled composite beam

An illustrative composite box-beam is shown in Fig. 1. Before deformation, the beam is straight,
untwisted, and is placed along the X axis, while the coordinates Y and Z de®ne the cross-sectional
planes.

Fig. 1. A general view of a deformed thick-walled blade.
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As shown in Fig. 1, and since the beam is a slender structure, the deformation is based on the cross-
sectional displacements u(X ), v(X ), and w(X ) in the X, Y, and Z directions, respectively, and a twist
angle, f(X ). These components of the deformation are functions of X only and, therefore, they
represent `rigid' deformation of each cross-section that contains no warping.

To account for the out-of-plane warping, a three-dimensional warping function is superimposed (in
the axial direction) upon the above mentioned displacements. This warping function is denoted by C,
and is assumed to be of zero average value over the cross-sectional area (i.e. ffC dA = 0). C is a
function of X, Y, and Z.

A local system of coordinates x±y±z which before deformation is parallel to the X±Y±Z system is
located at each cross-section (see Fig. 1). An additional system of coordinates, x '±y '±z ', which
represents the deformed attitude of the x±y±z system is also de®ned. According to Kalfon and Rand
(1993), one may write:8<:x

y
z

9=; � �D�
8<: x 0

y 0

z 0

9=;, �1�

where the linear version of [D ] which depends on the local deformation is given in Appendix A.
A fourth material system of coordinates x±Z±z which is attached to the contour so that x is parallel to

the x direction and Z is tangent to the local contour is shown in Fig. 2. The angles ai are measured
between the y and the Z directions, and ri is the normal distance to the tangent to the contour at the
point under discussion. Hence, ai and ri are constants over each segment. The directions x±Z±z are given
by: 8<: x

Z
z

9=; �
24 1 0 0
0 cos ai sin ai
0 ÿsin ai cos ai

358<:x
y
z

9=;: �2�

The deformation is de®ned using the radius vectors before and after deformation. This enables the
determination of the the tangent base vectors, with the aid of which the Green strain components will
be expressed. Before deformation, the radius vector for each material point may be generally expressed
as:

Fig. 2. Discretization of a thick-walled cross-section into Ns straight segments and the contour system of coordinates x±Z±z.
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~rP � XX̂� YŶ� ZẐ, �3�
while, after deformation:

~RP � RxX̂� RyŶ� RzẐ, �4�

where:8<:Rx

Ry

Rz

9=; �
8<:X� u�X �

v�X �
w�X �

9=;� �D�
8<:C�X,y,z�
y
z

9=;: �5�

The base vectors before and after deformation take the form:

~gi �
@~rP
@Xi

, �6a�

~Gi � @ ~RP

@Xi
, Xi � X,Y,Z: �6b�

and the resulting strain components are ®nally determined as:

eij � 1

2

h
~Gi
~Gj ÿ ~gi ~gj

i
: �7�

Since the linear formulation requires no distinction between the deformed and undeformed directions,
the above assumed deformation components may be directly used to construct the strain expressions.
Considering this linear case, the only nonvanishing strain components are given by:

exx � u,x ÿ yv,xx ÿ zw,xx �C,x, �8a�

gxz � yf,x �C,z, �8b�

gxy � ÿzf,x �C,y, �8c�

where exx is the normal strain, and gxz, gxy are the shear strains and ( ),x denotes di�erentiation with
respect to x.

Referring to Fig. 3, the above strain components may be described in the material system of
coordinates using r (the normal distance to the tangent to the contour at the point under discussion),
and n (the distance from the origin of the x±Z±z system to the crossing point of the Z axis and the
normal distance r ). It may be shown that r and n are given by:

r � z cos aÿ y sin a, �9a�

n � y cos a� z sin a: �9b�
Consequently, the strain components in the x±Z±z system directions are given by:

exx � u,x ÿ yv,xx ÿ zw,xx �C,x, �10a�
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gxZ � C,Z ÿ rf,x, �10b�

gxz � C,z � nf,x: �10c�

The constitutive relations for a general orthotropic lamina consists of nine independent elastic moduli,
Cij, which are functions of the material properties and the local ply angle relative to the x (or x ) axis
(see, e.g. Ochoa and Reddy, 1992). Reduction of these relations for the present case is obtained by
exploiting the beam slenderness and assuming szz=tZz=0. In addition, the stress sZZ is assumed to
vanish due to the neglect of the in-plane warping (i.e. the cross-sectional shape remains `rigid' in its own
plane). Note that the strains ezz, eZZ are not zero (and may be determined based on the values of the
strain components exx, and gxz ), and thus, Poisson's ratio e�ects are included in the above present
formulation. Elimination of these assumptions requires the inclusion of the in-plane warping or treating
the beam structure as a three-dimensional structure which are beyond the scope of the present model.
Thus, by substituting the above assumptions in the general constitutive relations for orthotropic
materials, the following reduced relations are obtained:0@sxx

txz
txZ

1A �
24C11 0 C16

0 C55 0
C16 0 C66

350@ exx
gxz
gxZ

1A: �11�

Fig. 3. De®nition of the distances r and n.
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The stress resultant over the cross-sectional area may be expressed as:

~t �
���������
~gx ~gx

q �
sxx ~Gx � txy ~Gy � txz ~Gz

�
, �12�

where:

sxx � sxx, �13a�

txy � txZ cos aÿ txz sin a, �13b�

txz � txZ sin a� txz cos a: �13c�
As indicated above, the deformation is de®ned using four cross-sectional displacement components (u,

v, w and f ) and a local warping function (C ). Likewise, equilibrium is achieved by four integral
equations and one di�erential equation. The integral equations equate the cross-sectional resultants Fx

(in the x direction), Fy (in the y direction), Fz (in the z direction) and the moment resultant Mx (in the x
direction) that are induced by the external resultant loads to the corresponding loads obtained by stress
integrations, namely:

Fx �
� �

A

sxx dA, �14a�

Fy �
� �

A

�txZ cos aÿ txz sin a�dA, �14b�

Fz �
� �

A

�txZ sin a� txz cos a�dA, �14c�

Mx �
� �

A

�ntxz ÿ rtxZ�dA: �14d�

The di�erential equation of equilibrium is the associated di�erential equilibrium equation in the x (or
x ) direction which is given by:

sxx,x ÿ txZ,Z � txz,z � Bx � 0, �15�
where Bx is the body force in the x direction. To assure consistency of the above integral and di�erential
equations in the x direction, one should require Fx,x=ÿffBx dA.

There are eight beam-type boundary conditions at the beam root and tip. For a clamped-free beam,
six of them are the following geometrical boundary conditions at the beam root:

u � v � v,x � w � w,x � f � 0: �16�
The remaining two natural boundary conditions at the beam tip are based on equating the external

transverse tip moments, Mtip
y and Mtip

z , to those obtained by stress integrations over the tip cross-
sectional area, At, namely:�

Mt
y,M

t
z

�
�
� �

At

�sxxz,ÿ sxxy�dAt: �17�
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Additional contour boundary condition that ensures traction-free surface along the beam should be
taken into account. This condition may be expressed as (see Fig. 3):

txz � 0 for z � zI,zO: �18�
As shown, the above formulation consistently includes body forces in the x direction and, therefore,

may adequately be used to predict also the e�ect of rotation on the behavior of composite blades.

3. The numerical methodology

3.1. The discretization

Based on the above linear formulation, a ®nite-di�erence numerical scheme that may handle general
geometries and lamination modes of thick-walled cross-sections has been derived. Within this approach,
each straight segment is divided into small cells as shown in Fig. 4(a) for a rectangular cross-section
(detailed notation is provided for the upper ¯ange only which is numbered i = 1). As shown, the cells
along the thickness direction are numbered by the index l (=1,2,..., L ) and the cells along the wall
direction by the index n (=1,2,..., Ni ). Similar discretization is applied to all segments. Subsequently a
value of Ci(n,l ) (i= 1,2,..., Ns ) is assigned for the out-of-plane warping function at the middle point of
each cell.

In contrast with thin-walled cross-sections, the discretization of a thick-walled cross-section poses
some di�culties. On one hand, it is clear that the orthotropic material laminae are placed parallel to the
wall direction. On the other hand, and as already mentioned, it is not clear what is the exact way in
which segments are connected in `real' thick-walled cross-sections, and therefore, the modeling of the
connecting points between segments is questionable. The technique adopted in the present analysis is
based on the de®nition of an overlapping factor, CA, that determines the amount of overlapping area
between adjoint segments. It is expected that 0 < CA < 1 will supply a realistic corner modeling in this
case. The sensitivity of the results to CA will be discussed later on.

3.2. The system of equations

With the aid of Eqs. (14a), (14b), (14c), (14d) and (5), it is possible to express the equilibrium
equations in terms of the displacements and to construct a linear system of (N � L � Ns )+4 equations
and unknowns that may be written as:

�S �fU g � f fg, �19�
where the unknown vector, {U }, is given by

fU g � hu,x,v,xxx,w,xxx,f,x,C1�1,1�, . . . ,CNs�N,L�iT: �20�
The local di�erential equation Eq. (15) supplies one equation per each cell while the integral

equilibrium equations (Eqs. (14a), (14b), (14c) and (14d)) supply the additional four integral equations.
Consequently, the loading vector { f } consists of the external resultant loads and all other quantities
that do not contain components of {U }. Generally, this vector may be written as:

f fgT �
�
f1,f2,f3,f4,f

1,f 2,f 3, . . . ,f M
	
, �21�
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where:

f1 � Fx � fx
ÿ
v,xx,w,xx,C

i�n,l �,x
�
, �22a�

f2 � Fy � fy
ÿ
v,xx,w,xx,C

i�n,l �,x
�
, �22b�

f3 � Fz, �22c�

Fig. 4. Discretization of a thick-walled box-beam into Ns=4 segments, and a discretization of each segment into N segments along

its length and L segments along its thickness.
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f4 �Mx �mx

ÿ
v,xx,w,xx,C

i�n,l �,x
�

�22d�

f i � f i
�
u,xx,v,xx,w,xx,C

i�n,l �,x,Ci�n,l �,xx,Ci�n,l �,xy,f,xx,Bx

�
: �22e�

Note that all the terms of the matrix [S ] and the functions fx, fy, mx and fi are also explicit functions
of the cross-sectional geometry and the lamination mode. All derivatives with respect to y, z or s are
expressed using a ®nite-di�erence scheme.

As shown, most of the computational e�ort is invested in the warping modeling. The above
formulation includes N � L � Ns warping unknowns and only 4 cross-sectional displacements. This
demonstrates the basic di�erence between isotropic and composite beam analysis (note that in the
isotropic case, the warping and the shear modeling are not essential for the determination of the axial
stresses).

3.3. The contour boundary conditions

For a thick-walled cross-section, the contour boundary condition (18) may also be expressed by a
®nite-di�erence scheme. This results in additional 2 � N � Ns equations (one per each boundary
segment), and the same number of additional unknowns which are the warping values at the segment
boundary edges, Ci

I�n� and Ci
O�n�, see Fig. 4(a).

The contour boundary condition may be described as txz=0, or C55(c,z+nf,x )=0, which may be
expressed as:

C,z � ÿnf,x: �23�

To implement the above condition, C is expressed using a polynomial expansion in the z direction at
the contour vicinities. To demonstrate that for the inner contour at the cell column n over segment i=1
[see Fig. 4(a)], C is expressed as:

C � a0 � a1z� a2z
2: �24�

By substituting the ®rst three points values C1
I �n�, C 1(n,1), C 1(n,2) and the corresponding z values,

z0, z0+Dt/2 and z0+3Dt/2, respectively, in Eq. (24) (where z0 is the z coordinate of the inner boundary),
it is possible to express a0, a1 and a2 in terms of C1

I �n�, C 1(n,1), C 1(n,2) and Dt, and the corresponding
boundary equation becomes a1+2a2z0=ÿnf,x (=C,z at z=z0).

More details about this procedure and expressions for the components of the matrix [S ] may be
found in Rappel, 1997.

3.4. The iterative scheme

The iterative scheme is initiated by some deformation assumption. Then, the resultant external loads
at discrete cross-sections along the beam are evaluated. Subsequently, Eq. (19) is solved and the
unknown vector, {U }, is obtained for each cross-section. The natural boundary conditions at the beam
tip (Eq. (17)) are then used to obtain the values of v,xx,w,xx there. This is done by expressing the stress
components of Eq. (17) in terms of the displacements which yields two equations where the only
unknowns are v,xx and w,xx. These values are then integrated along the beam and the distributions of
v,xx(x ) and w,xx(x ) are obtained. With the aid of the geometric boundary conditions at the root (Eq.
(16)), the distributions of u, v,x, w,x, v, w and f along the beam are also determined. Using this new
estimation of the deformation, the vector { f } at each cross-section is updated (since it is a function of
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longitudinal derivatives of the unknowns (see Eqs. (22a), (22b), (22c), (22d) and (22e)) and the iterative
process is repeated until convergence is achieved. Numerical study has shown that the above quasi-linear
scheme exhibits reasonable convergence characteristics.

4. Results

To demonstrate the capabilities and some numerical aspects of the present formulation and solution
procedure, the study presented in this section has been carried out for the composite box-beam shown in
Fig. 5. As shown, the beam length, width, height and thickness are denoted l, a, b and t, respectively,
and the results presented in this paper are for typical Graphite/Epoxy laminae with the following
material properties: E11=142. � 109 N/m2, E22=E33=9.8 � 109 N/m2, G12=G13=6.0 � 109 N/m2,
G23=4.8 � 109 N/m2, n12=n13=0.42, n23=0.5.

Part of the following discussion makes use of results obtained for thin-walled models. Such results
were acquired by using the present model with a single cell along its thickness, namely L = 1 [see Fig.
4(a)], and ignoring the boundary conditions of Eq. (18).

Fig. 5. Thick-walled box-beam notation.
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4.1. Validation

4.1.1. Discretization re®nement
Since the computation e�ort increases as a cubic function of the number of cells, the required number

of cells has been determined ®rst. As an example, a composite antisymmetric thin-walled beam
undergoing a torsional moment was studied. Fig. 6(a) shows the beam twist rate due to a tip torsional
moment as a function of the number of cells along the circumference NTOT=N (1)+N (2)+N (3)+N (4)

(note that only one cell in the wall thickness direction is employed for a thin-walled structure). The
results are also compared with the analytical expressions of Rand and Barkai (1996). As shown, the
results asymptotically approach a constant value which also agrees with the analytical result. The
corresponding extension rate described in Fig. 6(b) exhibits similarly. Based on these results, and on
additional similar results obtained for other loading modes, a number of NTOT=150 cells along the
circumference has been chosen for the correlations described in what follows. Similar study has shown

Fig. 6. Sensitivity of an antisymmetric thin-walled Graphite±Epoxy box-beam under tip moment to the number of circumferential

cells, NTOT (uniform lamination angle of 158, a= 0.039 m, b= 0.019 m, t= 0.001 m, M tip=1 N�m): (a) The twist rate (the ana-

lytic value is (f,x )a=8.66 � 10ÿ4 rad/m, (b) The extension rate (the analytic value is (u,x )a=2.66 � 10ÿ6.
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that for walls which are uniformly laminated along their thickness, L = 5 [see Fig. 4(a)] is su�cient.
Since no analytic solution exists in this case, the above study was con®ned to the convergence of the
numerical results only.

4.1.2. Composite beam behavior
Since no published results for the behavior of thick-walled beams are available, the following

validation of the numerical model are con®ned to correlation with thin-walled models.
As a ®rst step, the present model results were correlated with well established results for thin-walled

cross-sections. A correlation with experimental and ®nite-element based theoretical results reported in
Chandra et al. (1990) has been carried out. Representative results for antisymmetric box-beam under a
tip torsional moment and axial force are presented in Fig. 7(a,b). In both cases, the resulting twist is
presented. As shown, the present analysis generates reasonable prediction capability. A vast range of
similar correlations has produced an analogous conclusion.

4.2. Thick-walled cross-sections

Various thick-walled rectangular cross-sections are presented in Fig. 8. Subsequently, a thickness
coe�cient has been de®ned as Ct=t/a. As shown in Fig. 8, a thickness coe�cient of about 0.2
represents an upper realistic value of the thick-walled rectangular cross-section. Beyond that, a three-
dimensional treatment seems to be inevitable.

4.2.1. In¯uence of the overlapping parameter
Fig. 9(a,b) presents the in¯uence of the overlapping parameter, CA, on the resulting extension rate,

twist rate and the bending curvature rate in isotropic thick-walled box-beams. As expected, the
sensitivity to CA is higher for higher Ct values. Overall, an overlapping parameter in the range of
0.55 < CA < 0.6 produces reasonable correlation and this value has been chosen for the present study.

4.2.2. In¯uence of the wall thickness
The in¯uence of the wall thickness in isotropic beams has been studied ®rst. Fig. 10(a) presents the

w,xxx values created by a tip load over a thick-walled isotropic beam as a function of the thickness
coe�cient. The values are normalized by the analytic expression for the thick-walled case. As shown, the
value obtained for the thick-walled model is practically unit regardless Ct. However, the thin-walled
model produces higher w,xxx values. This is mainly due to the erroneous low estimation of the moment
of inertia in this case.

Similarly, the behavior of thick-walled beam undergoing a tip torsional moment is presented in Fig.
10(b). In the absence of a closed-form solution for thick-walled cross-sections for the present loading
mode, the reference analytic values are for thin-walled cross-section. Similar to Fig. 10(a), it is shown
that for a thick-walled cross-section, the torsional rigidity is increasing as a function of t in a more rapid
manner than the one predicted by the thin-walled solution (and therefore f,x of the thick-walled beam is
lower). Phenomenally, this result is expected, and can be analytically demonstrated in the case of a
circular thick-walled cross-section which is bounded by the radii r and R. In this case, the approximate
torsional rigidity (which is based on the thin-walled assumptions) is given by Ja=pR4 � �1� ~r�3�1ÿ ~r�=4,
where ~r � r=R. However, the exact solution in this case is J=pR4 � �1� ~r4�=2 and, therefore,
Ja=J � �1� ~r�2=�1� ~r2�=2. Clearly Ja/J 4 1 when ~r41 (i.e. the thin-walled case) and Ja/J < 1 for lower
values of ~r (i.e. as the thickness increases). For ~r � 0:5, which corresponds to Ct=0.5, Ja/J = 0.9. It is
important to note that the characteristics of a rectangular cross-section presented in Fig. 10(b) show
considerably larger discrepancies between the approximate and exact rigidity, and thus, it may be
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concluded that a rectangular cross-section is much more sensitive to the thickness coe�cient than a
circular cross-section.

4.2.3. Antisymmetric composite beams
Within this section, the discussion will deal with the in¯uence of the wall thickness on the behavior of

Fig. 7. Correlation of the present analysis results for antisymmetric thin-walled Graphite±Epoxy box-beam with the experimental

and Finite-Element theoretical results of Chandra et al. (1990). (a= 0.024 m, b= 0.012 m, t= 0.00076 m): (a) The twist at x/

l= 0.5 due to a tip torsional moment of M tip=1 lb�in, (b) The twist at x/l= 0.5 due to a tip axial force of F tip
x � 1 lb.
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antisymmetric composite beams, and in particular, the in¯uence of the wall thickness on the induced
couplings. First, for a loading of a tip torsional moment, Fig. 11(a,b) present the resulting twist and
extension rates. All values are normalized with the analytic solution results for this case (see Rand and
Barkai, 1996). As shown, for Ct=0.25, (u,x )/(u,x )a 3 0.80 while (f,x )/(f,x )a 3 0.79 and, in other words,
an error of about 20% in the prediction of both (u,x ) and (f,x ) is obtained when a thin-walled model is
applied to a thick-walled cross-section of the above thickness coe�cient. However, since the functions
shown in Fig. 11(a,b) are practically identical, the coupling magnitude f,x/u,x for this case is not
modi®ed by the wall thickness compared with the one predicted using a thin-walled model.

Fig. 12(a,b) shows that when a tip axial force is applied, the resulting values for Ct=0.25 are (f,x )/
(f,x )a 3 0.79 and (u,x )/(u,x )a 3 0.90. Thus, as indicated by Fig. 13, the prediction of the coupling
magnitude f,x/u,x using a thin-walled model induces an error of about 20% for Ct 3 0.25. Note that, as
expected, reciprocity (namely, f,x=F tip

x � u,x=M
tip) is maintained and demonstrated by the fact that Fig.

11(b) and Fig. 12(a) are practically identical.

The reader should note that for the case of axial force, the di�erent axial strain distribution in thick-
walled cross-section (compared with thin-walled cross-section) induces di�erent shear stress distribution
and subsequently di�erent twist angle. This is due to the `e�ective arm' of the induced shear stresses

Fig. 8. De®nition of the thickness coe�cient Ct for a cross-section of a/b= 2.
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which is di�erent compared with the one obtained in thin-walled cross-section. However, for the case of
torsional moment, the di�erent shear strain distribution in thick-walled cross-section does induce a
di�erent distribution of axial stress, however, this distribution does not have a signi®cant in¯uence on
the axial resultants.

The out-of-plane warping distribution is also in¯uenced by the wall thickness. The warping
distribution along the circumference and the thickness of a cross-section with a Ct=0.168 is shown in
Fig. 14. As shown, the warping over the central line (the 3rd layer of cells) is similar to the case of thin-
walled cross-section. Note that the warping vanishes over the ¯anges and webs middle points. Also, in
the vertical segments, the (absolute value of the) warping is higher over the inner boundary, while in the

Fig. 9. Isotropic box-beam behavior for various overlapping parameter, CA (a= 0.024 m, b= 0.012 m, M tip=1 N�m): (a)

Ct=0.0256, (b): Ct=0.256.
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horizontal segments, the warping is higher over the outer boundary. Fig. 15 shows that the warping is a
linear function of the thickness, and decreases dramatically as the wall thickness is increased.

The corresponding axial stress is presented in Fig. 16. The fact that the axial stress is almost
symmetric about the wall middle plane shows that this stress is mainly a bending stress of the ¯ange.
This axial stress dramatically decreases with the wall thickness, and therefore, the cross-sectional
tendency to bend is also smaller for a thick cross-section.

The stresses txZ and txz are presented in Fig. 17(a,b). As shown, txZ is a linear function of the
thickness while txz exhibits a `parabolic' variation over the wall thickness. Note that while txZ decreases
with Ct, txz increases with Ct (while the analytic solution for thin-walled cross-sections predicts no txz

Fig. 10. The values of w,xxx and f,x for an isotropic box-beam as predicted by thin-walled and thick-walled models as a function

of the thickness coe�cient: (a) The bending curvature due to a tip bending force normalized by the corresponding thick-walled ana-

lytic solution; (b) The twist due to a tip torsional moment normalized by the corresponding thin-walled analytic solution.
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stresses at all). This behavior validates again the classical thin-walled assumptions (namely
txZ(z ) 3 txZ(z=0)=const. and txz=0).

4.2.4. Symmetric composite beams
To demonstrate the thickness e�ect in symmetric beams, a symmetric blade has been constructed out

of two ¯anges with identical unbalanced ply angle of [y ]10 (which therefore features C16$0) with a web
ply angle of [y,ÿy ]5 (i.e. C16=0). The cantilever beam has been loaded with a tip beamwise load. It is
well known that such a beam exhibits a `Bending±Torsion' coupling which in the present case induces
elastic beamwise bending and twist Ð see, e.g. Rand (1994, 1998). Thus, the purpose of the present
study was to demonstrate the error induced by thin-walled models as a function of the wall thickness. It

Fig. 11. Antisymmetric composite box-beam response to a tip torsional moment as predicted by thin-walled and thick-walled

models normalized by the corresponding thin-walled solution as functions of the thickness coe�cient (uniform lamination angle of

158, a = 0.024 m, b= 0.012 m, t = 0.00076 m, Mtip
x � 1 N �m): (a) The values of f,x; (b) The values of u,x.
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should be noted that unlike the case of the antisymmetric beam, the twist (f,x ) is not constant along the
beam and so the bending curvature (w,xx ).

Fig. 18 presents the resulting beamwise displacement and twist angle as obtained by the present thick-
walled analysis normalized by the corresponding deformation as obtained by a thin-walled analysis for
three spanwise locations. The ratio between the results of the above two methods may be approximated
by eÿ3:4Ct for both the beamwise displacement and the twist angle. Only small di�erences are observed
between the various spanwise locations.

Fig. 19 presents the corresponding coupling magnitude. As shown, for Ct=0.2 an error of about 8±
10% is induced by using a thin-wall modeling. In general, the coupling variation shown in Fig. 19 may
be approximated as 1ÿ0.45Ct, which provides a clear estimation of the error induced in the present case
when a thin-walled analysis is used.

Fig. 12. Antisymmetric composite box-beam response to a tip axial force normalized by the corresponding analytic thin-walled sol-

ution as a function of the thickness coe�cient (uniform lamination angle of 158, a/b= 2): (a) The values of f,x; (b) The values of

u,x.
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The warping distribution for this case over the thickness middle line is presented in Fig. 20. In

contrast with the case of an antisymmetric beam, this distribution is very interesting since its

characteristics are changed along the beam. As shown, for the free end, the distribution is similar to the
one obtained for isotropic beam due to a tip beamwise load, while in the inboard cross-sections, a

Fig. 13. The coupling magnitude of an antisymmetric composite box-beam due to a tip axial force normalized by the corresponding

analytic thin-walled solution as a function of the thickness coe�cient (uniform lamination angle of 158, a/b = 2).

Fig. 14. The warping distribution as obtained by the thick-walled model for antisymmetric box-beam of Ct=0.168 due to a tip tor-

sional moment (uniform lamination angle of 158, a = 0.024 m, b= 0.012 m, t= 0.00076 m).
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distribution which is similar to the one obtained for isotropic beam due to a tip torsional moment is
superimposed on the one obtained at the tip. This may be explained by the fact that the twist f,x,
vanishes at the tip, but the value of w,xxx is constant along the beam since the shear force resultant is
constant (due to the tip load).

Fig. 15. The warping distribution over the wall thickness at j= 6 (see scheme in Fig. 14) as obtained by the thick-walled model for

antisymmetric box-beams of various Ct values due to a tip torsional moment (uniform lamination angle of 158, a = 0.024 m,

b= 0.012 m, t= 0.00076 m, Mtip
x � 1 lb� 2).

Fig. 16. The axial stress distribution over the wall thickness at j= 6 (see scheme in Fig. 14) as obtained by the thick-walled model

for antisymmetric box-beams of various Ct values due to a tip torsional moment (uniform lamination angle of 158, a= 0.024 m,

b= 0.012 m, t= 0.00076 m, Mtip
x � 1 lb� 2).
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5. Concluding remarks

The in¯uence of wall thickness on the structural behavior of composite blades has been studied using
a ®nite-di�erence based numerical model. Unlike models for thin-walled beams, the shear stresses
perpendicular to the wall thickness are accounted for. Due to the required warping modeling in the wall
thickness direction, the numerical model for thick-walled cross-sections is by far more complicated and
requires substantially larger computational resources. One of the aspects of the problem which is
di�cult to model is the connection between sharp corners of segments similar to the four corners in a
box-beam.

Fig. 17. The shear stresses distribution over the wall thickness at j= 6 (see scheme in Fig. 14) as obtained by the thick-walled

model for antisymmetric box-beams of various Ct values due to a tip torsional moment (uniform lamination angle of 158,
a= 0.024 m, b= 0.012 m, t = 0.00076 m, Mtip

x � 1 lb� 2): (a) The txZ component; (b) The txz component.
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The present model provides qualitative and quantitative indications regarding the amount of error

induced by using thin-walled assumptions when dealing with thick-walled con®gurations. Approximate

expressions for the above induced error are also provided. It has been shown that both the sti�ness and

the coupling magnitudes are considerably in¯uenced by the wall thickness and the resulting discrepancy

in the predicted characteristics may reach a value of 10±20% for thickness coe�cient of Ct 3 0.2.

Overall, it may be stated that basically, thick-walled composite beams maintain the composite induced

coupling characteristics, while their magnitude is a function of the wall thickness. Typical changes in the

sti�ness and the composite induce couplings may be modeled as exponential functions in the form of

eÿaCt where a is in the range of 0.5 < a < 1.0.

Fig. 18. The deformation due to a tip beamwise load of a symmetric composite box-beam as obtained by the thick-walled analysis

normalized by the prediction of a thin-walled analysis for three spanwise locations (¯ange lamination angle of 108, a/b= 2): (a)

The beamwise displacement; (b) The twist angle.
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Fig. 20. The warping distribution over the thickness middle line due to a tip beamwise load of a symmetric composite box-beam

for a range of spanwise locations (¯ange lamination angle of 108, a= 0.024 m, b= 0.012 m, t= 0.00076 m, F tip
x � 1 lb).

Fig. 19. The coupling magnitude due to a tip beamwise load of a symmetric composite box-beam as obtained by the thick-walled

analysis normalized by the prediction of a thin-walled analysis for three spanwise locations (¯ange lamination angle of 108, a/b= 2).
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Appendix A. The elastic transformation matrix

The elastic transformation matrix [D ] (see Eq. (1)) is de®ned by a sequence of rotations of Euler
angles (see also, Kalfon and Rand, 1993):

�D� �
24CyCz SxSyCz ÿ CxSz CxSyCz � SxSz

CySz CxCz � SxSySz ÿSxCz � CxSySz

ÿSy SxCy CxCy

35, �A1�

where Ci0cos(yi ), Si0sin(yi ) and yi=yx,yy,yz. Assuming that the rotations are executed by a rotation
of yz about the Z axis, followed by a rotation of the resulting system by yy about its Y axis, followed by
a rotation of the resulting system by yx about its X axis, the above rotation angles are given by:

yx � f, sin�yy� � ÿw,X
L2

, cos�yy� � ÿL1

L2
, sin�yz� � v,X

L1
, cos�yz� � �1� u,X�

L1
,

L1 �
�������������������������������������
�1� u,X�2 � �v,X�2

q
L2 �

������������������������
L2
1 � �w,X�2

q
:

�A2�

In the linear case, yy 3 ÿw,X, yz 3 v,X, and cos(yx ), cos(yy ) and cos(yz ) may be treated as units. In
addition, all derivatives with respect to X may be replaced with derivatives with respect to x. In this
linear case, [D ] becomes:

�D� �
24 1 ÿv,x ÿw,x
v,x 1 ÿf
w,x f 1

35: �A3�
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